◆國傷光 第16卷第6期

用 266.0 nm 紫外激光探针研究等离子体 冕区电子密度结构

章辉煌 林尊琪 谷忠民 何兴法 戴美兰 庄亦飞 余文炎 (中国科学院上海光机所)

Studies of electron density structures in the corona of laserproduced plasma using 266 nm UV optical probe

Zhang Huihuang, Lin Zunqi, Gu Zhongmin, He Xingfa, Dai Meilan, Zhuang Yifei, <u>Yu Wenyan</u> (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)

提要:用 266.0 nm 紫外激光探针测量了柱状铜靶 (\$ 500 \mum 和 \$ 140 \mum) 等 离子体电子密度的空间分布,发现了径向密度凹陷和凸起结构,观察到了轴向和偏轴 向密度轮廓陡变随时间的发展过程,并用简单的理论模型进行了半定量分析,结果与 实验基本一致。

关键词: 激光探针,等离子体密度

一、引言

等离子体冕区许多相互作用现象(如细 丝、自生磁场、能量传输过程等)都与电子密 度分布密切相关。随着对这些相互作用机制 的深入研究,与之相关的密度变化信息,亦引 起人们的很大兴趣。我们曾用 630.3 nm 激 光喇曼探针研究了柱状靶和球靶上等离子体 的密度^{CD},获得了许多低密度台阶上的物理 信息。由于喇曼探针波长较长,在大尺度等 离子体上的折射效应非常明显,以及干涉系 统的空间分辨率(~6µm)较低等因素的限 制,使得可测最高电子密度仅达 0.2n₆(n₆= 10²¹cm⁻³)。本文采用短波长 266.0 nm紫外激 光探针,并设计一个适于紫外波段,具有高空 间分辨率(2μm)的显微成像系统 来测量等 离子体密度轮廓随时间、空间变化,结果使可 测电子密度最高可达 0.7 nc。在密度测量实 验结果中,发现存在着一种与主激光焦斑直 径相当的径向密度凹陷和凸起结构;并且观 察到了在临界密度以下轴向密度轮廓受激光 场的强调制以及偏轴向密度轮廓受激光场的 弱调制而发生陡变的现象。用简单的物理模 型对以上实验结果作了半定量分析,获得较 为完满的解释。

收稿日期: 1988年12月5日。

二、实验装置

紫外激光探针及干涉系统建立在上海光 机所六路高功率钕玻璃激光装置上。用该 装置上第五路输出的 \$\$50mm 或 \$50mm 1.06 µm 激光 (0.5~1J, 250 ps FWHM) 作 为紫外光探针的输入基频光。 经 KDP 和 BBO 晶体串级倍频后获得 266.0 nm 波长的 紫外光输出。置于1.06 µm 激光输出端的是 口径 ϕ 60 mm II 类匹配 KDP 晶体, 它将 1.06 µm 基频光倍频成 532.0 nm 绿光。选 用大口径的 KDP 作为第一级倍频晶体旨在 减少晶体内部的1.06 µm 激光功率密度, 避 免因激光波面光强分布不均匀引起自聚焦等 非线性效应损坏晶体。此外,低功率密度的 1.06 µm 辐射有利于倍频过程中 532.0 nm 绿光脉冲宽度的压缩。在本实验条件下, 1.06 µm 激光辐射强度较低(约 0.2 GW/ om²),又未实施温度控制,KDP 晶体倍频能 量转换效率最高仅达10%。如果扣除晶体 和光路上其它光学元件的吸收和反射损耗, 实际效率更低。

第二级倍频晶体采用中国科学院福建物 构所研制的 I 类匹配 BBO 晶体 (7.8×8× 6.6 mm³)。由于 BBO 晶体的通光口径(7× 7mm²)较小, 故在两晶体之间放置一个3:1 的缩孔望远镜,以提高 BBO 晶体上绿光的辐 照强度。通过缩孔望远镜的绿光略有会聚, 在透过 BBO 晶体时将有一部分绿光能量因 相位失配而损失。 所以, 尽管 BBO 晶体的 SHG 系数比 ADP 大 3~4 倍^[2], 从绿光到紫 外光的能量转换效率最高亦只有 21%。此 外,相当一部分绿光能量损失在 BBO 晶体通 光口径的外缘。因此紫外激光探针的总体转 换效率仅达0.2%,紫外光输出能量1~2mJ, 脉宽约 125 ps(FWHM)。实验表明,这样的 紫外光能量足以经受干涉系统各光学元件的 吸收和反射损耗使记录底片曝光, 甚至可用

图1 实验排布与 Normaski 干涉仪 1—光程延迟; 2—干涉图样; 3—暗盒; 4—266nm 干涉滤 光片; 5—窗 B(镀 1.C6μm 全反): 6—检偏器 P₂; 7— Wollaton 棱镜; 8—多透镜显微物镜 (f=40 mm, φ10.8 mm); 9—色差补偿片(镀 532 nm 全反); 10—靶; 11— 透镜(f/1.5); 12—靶室; 13—窗 4; 14—起偏器 P₁; 激 光束 1—1.06μm 主激光; 激光束 2—266 nm 紫外探针光 于多通道光探针的等离子体诊断; 实验还表 明输入 1.06μm 激光辐照强度较低时, 输出 的 266.0 nm 紫外光波面比较平滑。

测量等离子体电子密度的紫外干涉系统 是 Normaski 型的偏振干涉仪^[33],它的优点是 结构简单,两束干涉光精确同步,光路准直方 便和底片无需再现;其干涉原理与杨氏干涉 相似。干涉仪主要由 Wollaston 棱镜、走偏 和检偏棱镜、显微成像物镜(f=40 mm, ϕ 10.8 mm)和记录底片组成。Wollaston 棱 镜是用两块顶角 30°、光轴方向相互垂直的 劈状石英晶体胶合而成。它可使相对于顶棱 45°入射的线偏振光分离成偏振方向相互垂 直、振幅相等、夹角 0.8°的两束微剪切干涉 光束,并在检偏器的作用下,形成偏振干涉。

我们设计一个显微物镜加色差补偿片的 成像系统,使用现有的可见光 He-Ne 连续激 光即可准直紫外干涉系统的光路,并获得清 晰的等效紫外光靶像^{[41}]。克服以往人们惯用 紫外连续激光准直光路和调整靶像所带来的 诸多困难。显微成像系统空间分辨率为 2μm。干涉底片选用上海感光胶片厂生产 的感光波段很宽(100.0nm~红外)的航空胶 片,实验测定它对 266.0nm 波长的感光灵敏 度约为1~2μJ/cm²。在干涉记录底片前放 置 266.0nm 干涉滤光片(中心波长透过率 28%,半宽度 2.8nm,非通带消光比为100), 以防止等离子体谐波光和其它杂散光对干涉 图样的干扰。

三、结果与分析

选用 ϕ 500 μ m和 ϕ 140 μ m 柱状铜靶作 为实验用靶。主激光能量为 7~10J, 脉宽为 250 ps(FWHM), 靶面峰值功 率密度 可达 10¹⁵ W/cm³。从条纹相机对主激光脉冲的时 间扫描图上看, 多数脉冲形状并不是高斯分 布,在局部的时间区域内, 其峰值功率密度很 高。 图 2(a-c)给出了相对于主激光脉冲峰 值位置有若干延迟时刻(4t=300ps, 400ps 和

 $z(\mu m)$ (c) $\Delta t = 500 ps$

图2 $\phi 50 \mu m$ 柱状铜靶上的电子密度分布

500ps)的 φ 500 μm 柱状铜靶上等离子体干 涉图和电子密度的空间分布。在对干涉图作 Abel 变换的数值处理过程中, 我们假设等离 子体是相对于主激光轴(z轴)对称分布的。在 各延迟时刻的空间密度分布中,我们发现一 个明显的共同特征,即在靠近 2 轴的中心密 度区存在着类似于"火山口"状的径向密度凹 陷;其凹陷尺寸与主激光焦斑直径($\phi70 \mu m$) 相当。造成这一现象的主要原因是激光辐射 压力^[3](或有质动力)排挤近轴区电子, 将动 量和能量转移给电子,使电子能够克服自身 的热压 P。向远轴方向运动。 这时近轴区的 电子在有质动力的挤压下, 向外运动速度高 于无场区(或弱场区)的电子作自由膨胀运动 的速度: 从而形成径向电子密度近轴区的凹 陷结构,并在激光焦斑外缘($r = 60 \sim 80 \,\mu m$) 处形成密度隆起。

我们可用一个简单的理论模型来解释这种密度凹陷现象, 假设在相对于 z 轴呈柱对.称分布的等离子体中, 径向电子自身的热压. (方向沿 - r) 与有质动力(方向沿 r) 在激光脉冲期间达到平衡:

$$-\frac{1}{n}\frac{\partial n}{\partial r} = \alpha \frac{\partial |E|^2}{\partial r} \qquad (1)$$

式中,n=n(r)是电子密度, E是激光电场,

$$s = \frac{Ze^3}{4mM\omega_0^2 c_s^2},$$

其中Z、e、m、M、ωo和 c。分别表示靶原子序数、电荷、电子质量、离子质量、激光频率和声速。如果入射主激光波面光强呈高斯分布,

$$|E|^{2} = |E_{0}|^{2} e^{-r^{2}/a^{2}}$$
(2)

这里 | *E*₀| 为 ≈ 轴上电场振幅, *a* 为高斯光束 半径。将(2)代入(1)积分可得径向电子密度 随 *r* 变化关系:

$$n = n_0 \exp[-\alpha |E_0|^2 (e^{-r^2/a^2} - 1)]$$
 (3)

其中 no 为 z 轴上的电子密度。

在本实验条件下, $\alpha | E_0|^2 = 0.84$ (峰值功 率密度 $\sim 10^{15} \text{ W/cm}^3$)、 $n_0 = 0.3n_c$ 。将它们 代入(3)式即可得到径向电子密度在近 z 轴